Date

Issue No. SP-01

Structural Engineering Series by Structure Pedia

Concept and Theory

Worked Example

References

Computing Dead Load

Concept and Theory

Dead Load shall be calculated on the basis of unit weights which shall be established taking into consideration the materials specified for construction.

Materials	Unit weight KN/m3
Brick Masonry	19
Reinforced concrete	25
Plain Concrete	23.5
Sand	17-19
Steel	76.5
Plaster	20

Common Loading for Residential Building

Floor Finish	Live Load
1.5 KN/m2	1.5 KN/m2
1.0 KN/m2	2.0 KN/m2
2.5 KN/m2	2.0 KN/m2
0.75 KN/m2	2.0 KN/m2
1.0 KN/m2	3.0 KN/m2
1.0 KN/m2	3.0 KN/m2
0.25 KN/m2	
	Floor Finish 1.5 KN/m2 1.0 KN/m2 2.5 KN/m2 0.75 KN/m2 1.0 KN/m2 1.0 KN/m2 0.25 KN/m2

Dead Load of Slab is computed based on per unit width. For example, we need to design slab of depth 250 mm. Considering table above unit weight of reinforced concrete is 25 kN/m3.

To calculate dead load of slab, depth would be 250mm and width would be 1000mm.

Dead load of slab = $25 \times 0.25 \times 1 = 6.25 \text{ kN/m}$

Here slab will be designed as beam having width 1000mm and depth 250mm.

Dead Load of beam is computed based on the cross section of beam but we need to subtract slab depth from the beam depth to avoid double count of slab weight.

For example, we need to design beam of depth 600 mm and width 300 mm. Considering table above unit weight of reinforced concrete is 25 kN/m3.

To calculate dead load of beam , depth would be 350 mm (subtract 250 mm from 600 mm) and width would be 300 mm.

Dead Load of Column is computed based on the cross section of column and length of column shall be considered from soffit of top floor to top face of bottom floor. Considering table above unit weight of reinforced concrete is 25 kN/m3.

To calculate dead load of column , cross section of column is 230 x 230 mm and length of column is 2800 mm

Dead load of column = $25 \times 0.23 \times 0.23 \times 2.8$ = 3.703 kN

Code of practice

IS 456 (2000) : Plain and Reinforced Concrete IS 875-1 (1987) : Code of practice for design loads -Dead Loads

Email : htmstructuredesign@gmail.com | IG : @structurepedia | www.structurepedia.in

Date 14-04-2024 Issue No. SP-01

St

vorked Example	+				
Building on the right has grid size of 5m x 6m. The building is constructed 3 rd Floor					
using the column of size	250	600	-		1
soomm x soom and beam		\rightarrow	-		1
of size 300mm x 600mm.		1		2800	
Density of reinforced	250	600			1
concrete = 25 KN/m3				*	•
calculate the axial force at		`' →	300	2,800	
he point C (just above the 1st Floor	250	600	C	2000	
st floor) due to self weight	250	1			t
the structure.		+			ſ
lote : Finish loading or mposed loading shall not	, 5000		 		
LAB DEAD WEIGHT Dead load of the slab due to 3rd floor Dead load of the slab due to 3rd floor	= 25 x 0.3	25 x 5	x 6 = 1	.87.5 KN	
Dead load of the slap due to tha floor	$r = 25 \times 0$	20 X 0	x 6 = 1	187.5 KN	
CAN DEAD METCHE					
EAM DEAD WEIGHT					
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon	g 6m Leng	th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon	g 6m leng KN g 5m leng	th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375	g 6m leng KN g 5m leng KN	th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375 Beam dead load due to 3rd floor alon	g 6m leng KN g 5m leng KN	th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625	g 6m leng KN g 5m leng KN g 6m leng KN	th th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon	g 6m leng KN g 5m leng KN g 6m leng KN g 5m leng	th th th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375	g 6m leng KN g 5m leng KN g 6m leng KN g 5m leng KN	th th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 x 0.3 x (0.6-0.25) x (5-0.3) = 12.3375 CLUMN DEAD WEIGHT	g 6m leng KN g 5m leng KN g 6m leng KN g 5m leng KN	th th th			
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 \times 0.3 \times (0.6-0.25) \times (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 12.3375 COLUMN DEAD WEIGHT Column weight from 2nd to 3rd floor = 25 COLUMN Weight from 1st to 2nd floor = 25 COLUMN Weight from 1st to 2nd floor = 25	g 6m leng KN g 5m leng KN g 6m leng KN g 5m leng KN	th th th 0.3 x 2. .3 x 2.5	.8 = 6.3 8 = 6.3	3 KN KN	
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 \times 0.3 \times (0.6-0.25) \times (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (5-0.3) = 12.3375 OLUMN DEAD WEIGHT Column weight from 2nd to 3rd floor = 25 OTAL	g 6m leng KN g 5m leng KN g 6m leng KN g 5m leng KN 5 x 0,3 x 0, x 0,3 x 0,	th th th .3 x 2.3	.8 = 6.3 8 = 6.3	3 KN KN	
EAM DEAD WEIGHT Beam dead load due to 3rd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 3rd floor alon 25 \times 0.3 \times (0.6-0.25) \times (5-0.3) = 12.3375 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 14.9625 Beam dead load due to 2nd floor alon 25 \times 0.3 \times (0.6-0.25) \times (6-0.3) = 12.3375 COLUMN DEAD WEIGHT Column weight from 2nd to 3rd floor = 25 COLUMN DEAD WEIGHT Column weight from 1st to 2nd floor = 25 COTAL	g 6m leng KN g 5m leng KN g 6m leng KN g 5m leng KN 5 x 0.3 x 0 x 0.3 x 0	th th th 3 x 2.5	8 = 6.3 8 = 6.3	3 KN KN	

Email : htmstructuredesign@gmail.com | IG : @structurepedia | www.structurepedia.in